Финансы и риски.

Аutobi.ru

Определение современной и будущей величины денежных потоков

Интересно отметить связь, существующую между годовой вечной и годовой ограниченной рентами (аннуитетами). Преобразовав правую часть формулы (2.3.4), получим

. (2.3.20)

Таким образом, современная величина конечной ренты, имеющей срок n периодов, может быть представлена как разница между современными величинами двух вечных рент, выплаты по одной из которых начинаются с первого периода, а по второй – с периода (n+1).

В случае если член вечной ренты R ежегодно увеличивается с постоянным темпом прироста g, то приведенная стоимость такой ренты определяется по формуле

, (2.3.21)

где R1 – член ренты в первом году.

Данная формула имеет смысл при g < i. Она применяется в оценке обыкновенных акций.

При сравнении приведенной стоимости различных аннуитетов можно избежать громоздких вычислений, запомнив следующее правило: увеличение числа выплат по ренте в течение года (p) увеличивает ее текущую стоимость, увеличение числа начислений процентов (m), наоборот, уменьшает. При заданных значениях R, n, i (j, d) наиболее высокий результат даст дисконтирование p-срочной ренты с одним начислением процентов в год (m = 1). Самый низкий результат при этих же условиях будет получен по годовой ренте (p = 1) с непрерывным начислением процентов. По мере увеличения p современная величина ренты будет расти, по мере роста m она будет снижаться. Причем изменение p дает относительно больший результат, чем изменение m. То есть любая p-срочная рента даже с непрерывным начислением процентов (m → ∞) будет стоить дороже, чем годовая рента (p = 1) с одним начислением процентов в год (m = 1). Например, по облигации предусмотрена ежегодная выплата 1 тыс. руб. в течение 5 лет. Процентная ставка составляет 20 %. При начислении декурсивных процентов один раз в год стоимость этой ренты по базовой формуле (2.3.4) составит 2,99 тыс. руб. Если выплаты будут производиться два раза в год по 500 руб., то по формуле (2.3.12) стоимость ренты будет равна уже 3,13 тыс. руб. Но если по последнему варианту начислять проценты два раза в год (2.3.13), текущая величина ренты снизится до 3,07 тыс. руб. Если же двукратное начисление применить к исходному варианту при p = 1 (11), то приведенная стоимость ренты станет еще меньше – 2,93 тыс. руб. Самым дешевым будет вариант годовой ренты (p = 1) с непрерывным начислением процентов (2.3.15) – 2,86 тыс. руб. Перейти на страницу: 1 2 3 4 5 6